skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brun, Todd"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Jaeger, Gregg (Ed.)
    Recent work has demonstrated a correspondence that bridges quantum information processing and high-energy physics: discrete quantum cellular automata (QCA) can, in the continuum limit, reproduce quantum field theories (QFTs). This QCA/QFT correspondence raises fundamental questions about how matter/energy, information, and the nature of spacetime are related. Here, we show that free QED is equivalent to the continuous-space-and-time limit of Fermi and Bose QCA theories on the cubic lattice derived from quantum random walks satisfying simple symmetry and unitarity conditions. In doing so, we define the Fermi and Bose theories in a unified manner using the usual fermion internal space and a boson internal space that is six-dimensional. We show that the reduction to a two-dimensional boson internal space (two helicity states arising from spin-1 plus the photon transversality condition) comes from restricting the QCA theory to positive energies. We briefly examine common symmetries of QCAs and how time-reversal symmetry demands the existence of negative-energy solutions. These solutions produce a tension in coupling the Fermi and Bose theories, in which the strong locality of QCAs seems to require a non-zero amplitude to produce negative-energy states, leading to an unphysical cascade of negative-energy particles. However, we show in a 1D model that, by extending interactions over a larger (but finite) range, it is possible to exponentially suppress the production of negative-energy particles to the point where they can be neglected. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026